Corrections for Advanced Functions

Chapter 1	Chapter 1			
Location	Question	Correct Answer		
Getting	4d	$\mathbf{D} = \{ x \in \mathbf{R} \},\$		
Started		$\mathbf{R} = \{ v \in \mathbf{R} \mid -3 \le v \le 3 \}$		
		(Correct in solutions manual)		
1.2	4d	Entire number line should be shaded on graph.		
Mid-Chapter	2b	D = [0, 10]		
Review				
Mid-Chapter	2c	R = [10, 50]		
Review				
1.4	3	(-4, -10)		
1.4	7c	$g(x) = -2(2^{3(x-1)}) + 4$		
1.4	9c	(-1, -23)		
1.4	12	Graph of $h(x)$ (green) should be reflection of graph of $f(x)$ over x-		
		axis.		
1.5	6b	Labels should be in degrees, not radians. Curves should not have		
		arrowheads at ends.		
1.6	6	$(15.if 0 \le x \le 500)$		
		$15 \pm 0.02(r - 500)$ if $r > 500$		
1.(10	$(13+0.02(x-500), y x \ge 500)$		
1.6	12	discontinuous at $p = 15$; continuous at 0		
Chapter	3	$\mathbf{R} = \{f(x) \in \mathbf{R} \mid f(x) \ge -1\}$		
Review	17			
Chapter	1/a	$30, if x \le 200$		
Review		(24+0.03x, if x > 200)		
		(Correct in solutions manual)		
Chapter Self-	7a	(-2, 17)		
Test				
Chapter Self-	9a	\$11 500		
Test				
Chapter Self-	9b	$\int 0.05, if x \le 50000$		
Test		0.12x - 5500, if $x > 50000$		
Chanter 2				
Location	Question	Correct Answer		
Mid-Chapter	1h	$750^{\circ} 0^{\circ} 250^{\circ} 1100^{\circ} 400 \text{ m}^3/\text{month}$		
Review	10			
Mid-Chapter	3b	$t \approx 2$: Answers may vary. For example: The graph has a vertex at		
Review	20	(2, 21). It appears that a tangent line at this point would be		
		(f(2,01) - f(1,99))		
		horizontal. $\frac{(0, (200))^2}{0.02}$		
2.5	2	0 mm Hg/s		
Chapter	- 4a	Answers may vary For example because the unit of the equation		
Review	iu l	is years you would not choose $3 \le t \le 4$ and $4 \le t \le 5$. A better		
10000		choice would be $3.75 < t < 4.0$ and $4 < t < 4.25$		
Chanter	8	Graph should start at $(0, 0)$ and connect to the rest of the surve		
Review	0			

Chapter 3			
Location	Question	Correct Answer	
Getting	8	The values of x that make $f(x) = 0 = n$ (Located on arrow above	
Started		box with "The zeros are -2 and -6 .")	
3.4	2e	$y = x^2$; reflection in the x-axis, vertical stretch by a factor of 4.8,	
		and horizontal translation 3 units right	
		(Correct in solutions manual)	
3.4	6f	(-11, -3), (-4, -2), (10, 6)	
3.5	3c	<i>x</i> – 6	
3.5	6d	$x^2 + 2x - 8$ remainder -4	
3.6	8a	Graph is incorrect; should be graph of $y = (x + 6)(x + 5)(x - 2)$	
Chapter	2	As $x \to -\infty$, $y \to +\infty$, and as $x \to \infty$, $y \to -\infty$.	
Review			
Chapter 4			
Location	Question	Correct Answer	
4.1	2d	0, $\frac{2}{5}$, -3 (Correct in solutions manual)	
4.1	14c	0.45 s, 3.33 s (Correct in solutions manual)	
4.1	16	x = -3, $x = -2$, $x = 5$ (Correct in solutions manual)	
4.2	17b	Move the terms with variables to one side and constants to the	
		other. Graph $y = 2^x - x$ and $y = 4$ on a graphing calculator and	
		determine where $y = 2^x - x$ is below $y = 4$.	
		-3.93 < x < 2.76	
4.2	11a	Answers may vary. For example, $\frac{1}{2}x + 1 < 3$	
4.2	19b	$\{x \in \mathbf{R} \mid -3 \ge y \ge 3\}$	
4.2	19d	$\{x \in \mathbf{R} \mid x \le -3\}; (-\infty, -3)$	
		graph should be shaded from -3 to left	
Mid-Chapter	6a	Answers may vary. For example, $3x + 1 > x + 15$	
Review			
Mid-Chapter	6b	Answers may vary. For example, $5x - 1 < x - 33$	
Review			
Mid-Chapter	6c	Answers may vary. For example, $x - 3 \le 3x - 1 \le x - 13$	
Review			
4.3	6e	$-\frac{3}{2} \le x \text{ or } x \ge 3$ (Correct in solutions manual)	
4.3	18	$x - 1 \le \text{or } x \ge 2$ (Correct in solutions manual)	
4.4	2e	$0 \le x \le 2$	
4.4	4a	7 (Correct in solutions manual)	
4.4	4b	Answers may vary. For example, (4.5, 3).	
		(Correct in solutions manual)	
4.4	11a	Remove graph.	
4.4	11b, 11c	Answers should be combined.	
	, í	(Correct in solutions manual)	
Chapter	3b	-3.10 (Correct in solutions manual)	
Review		``''	
Chapter	6a	Answers may vary. For example, $3x + 1 > x + 17$	
Review			

Chapter	6b	Answers may vary. For example, $4x - 4 \ge x - 16$
Review	-	
Chapter	6c	Answers may vary. For example, $3x + 3 \le x - 21$
Review		
Chapter	6d	Answers may vary. For example, $x - 19 < 3x - 1 < x - 3$
Review		
Chapter	7b	$r \in (\infty, \frac{23}{2}]$
Review		$x \in (-\infty, -8]$
Chapter Self-	8a	$\{x \in \mathbf{R} \mid -2 < x < 7\}$
Test		
Chapter 5		
Location	Question	Correct Answer
Getting	2f	a-b ($2, 2$
Started		$\overline{2a-3b}, a \neq -3, 3$
Getting	3c	$-4x + 8, x \neq -2, 3$
Started		
Getting	4d	3x + 6
Started		$\frac{1}{x^2-3x}, x \neq 0, 3$
Getting	4f	-2a + 50
Started	11	$\frac{2a+3}{(a+3)(a-5)(a-4)}, x \neq -3, 4, 5$
Getting	5d	r = 11
Started	34	λ 11
5.1	02	$D = \{r \in \mathbf{P}\}$
5.1	Ja	$D = \{x \in \mathbf{R}\}$
		$\mathbf{R} - \{\mathbf{y} \in \mathbf{R}\}$
		y-intercept – 8
		x-intercept = -4
		negative on $(-\infty, -4)$
		positive on $(-4, -\infty)$
		increasing on $(-\infty,\infty)$
		equation of reciprocal: $y = \frac{1}{1}$
		2x+8
5.1	9b	$\mathbf{D} = \{x \in \mathbf{R}\}$
		$\mathbf{R} = \{ y \in \mathbf{R} \}$
		y-intercept = -3
		v intercent – 3
		x-intercept – – – 4
		positive on $(-\infty, -\frac{1}{4})$
		negative on $\left(-\frac{3}{4},\infty\right)$
		decreasing on $(-\infty, \infty)$
		equation of reciprocal: $y = \frac{1}{-4x-3}$
5.1	9c	$D = \{x \in \mathbf{R}\}$
		$R = \{v \in \mathbf{R} \mid v \le -12.25\}$
		v-intercept = 12
		x-intercepts = -3
		decreasing on $(-\infty, 0.5)$
5.1	9c	positive on $(-\infty, -\frac{3}{4})$ negative on $(-\frac{3}{4}, \infty)$ decreasing on $(-\infty, \infty)$ equation of reciprocal: $y = \frac{1}{-4x-3}$ $D = \{x \in \mathbf{R}\}$ $R = \{y \in \mathbf{R} \mid y \le -12.25\}$ y-intercept = 12 x-intercepts = , -3 decreasing on $(-\infty, 0.5)$

		increasing on $(0.5, \infty)$
		positive on $(-\infty, -3)$
		negative on $(-3, 4)$
		equation of reciprocal: $y = \frac{1}{x^2 - x - 12}$
5.1	9d	$\mathbf{D} = \{ x \in \mathbf{R} \}$
		$R = \{ y \in \mathbf{R} \mid y \le 0.5 \}$
		y-intercept = -12
		x-intercepts = $3, 2$
		increasing on $(-\infty, 2.5)$
		decreasing on (2.5, ∞)
		negative on $(-\infty, 2)$ and $(3, \infty)$
		positive on (2, 3)
		equation of reciprocal: $v = \frac{1}{1}$
		$-2x^2 + 10x - 12$
5.1	12e	$D = \{ x \in \mathbf{R} \mid 1 \le x \le 10 \ 000 \},\$
		$R = \{ y \in \mathbf{R} \mid 1 \le y \le 10\ 000 \}$
5.2	1d	D; The function in the denominator has zeros at $x = 1$ and $x = -3$.
		the rational function has vertical asymptotes as $x = 1$ and $x = -3$.
5.2	2i	vertical asymptote at $x = -\frac{1}{x}$ horizontal asymptote at
		4, 1011201111 105711-1000 11
5.2	20	y=2
5.2	50	$y = \frac{x+2}{x^2+x-2}$
53	2e	$D = \{r \in \mathbf{R} \mid r \neq 2\}$
0.0	20	$\mathbf{R} = \{ \mathbf{y} \in \mathbf{R} \mid \mathbf{y} \neq 0 \}$
5.3	3f	$\frac{3}{3}$
		positive. $(-\infty, -1)$ and $(4, \infty)$
		negative: $\left(-1, \frac{3}{4}\right)$
5.2	4	
5.3	4a	$x = -3$; As $x \to -3$ from the left, $y \to -\infty$. As $x \to -3$ from the
5.2	41	right, $y \to \infty$.
5.3	40	$x = 5$; As $x \to 5$ from the left, $y \to -\infty$. As $x \to 5$ from the right, y
5.2	4	$\rightarrow \infty$.
5.3	4C	$x = \frac{1}{2}$; As $x \to \frac{1}{2}$ from the left, $y \to -\infty$. As $x \to \frac{1}{2}$ from the right, y
5.2	4.4	\rightarrow .
5.5	40	$x = -\frac{1}{4}$; As $x \to -\frac{1}{4}$ from the left, $y \to -\infty$. As $x \to -\frac{1}{4}$ from the
		right $v \rightarrow \infty$
5.3	5c	1
		vertical asymptote at $x = \frac{1}{4}$
		$1 - \frac{1}{2}$
		norizontal asymptote at $y = \frac{1}{4}$
		$\mathbf{D} = \{ x \in \mathbf{R} \mid x \neq \frac{1}{4} \}$
		$\mathbf{P} = \{\mathbf{u} \in \mathbf{P} \mid \mathbf{u} \in \frac{1}{2}\}$
		$\mathbf{K} = \{ y \in \mathbf{K} \mid y \neq 4 \}$

		x-intercept = -5
		y-intercept $= -5$
		$f(x)$ is positive on $(-\infty, -5)$ and $(\frac{1}{4}, \infty)$ and negative on $(-5, \frac{1}{4})$.
		The function is decreasing on $(-\infty, \frac{1}{4})$ and on $(\frac{1}{4}, \infty)$. The function
		is never increasing.
5.3	7a	The equation has a general vertical asymptote at
		$x = -\frac{1}{n}$. The function has a general horizontal asymptote at $y = \frac{8}{n}$.
		The vertical asymptotes are $-\frac{1}{8}$, $-\frac{1}{4}$, $-\frac{1}{2}$, and -1 . The horizontal
		asymptotes are 8, 4, 2, and 1. The function contracts as <i>n</i> increases.
		The function is positive on $(-\infty, -\frac{1}{n})$ and $(0, \infty)$. The function is
		negative on $\left(-\frac{1}{n}, 0\right)$.
5.3	7c	The horizontal asymptote is $y = \frac{8}{n}$, but because <i>n</i> is negative, the
		value of <i>y</i> is negative. The vertical asymptote is $x = -\frac{1}{n}$, but
		because n is negative, the value of x is positive. The function is negative on
		$(-\infty, 0)$ and $(-\frac{1}{n}, \infty)$. The function is positive on
		$(0, -\frac{1}{n}).$
5.3	8	f(x) will have a vertical asymptote at $x = 1$; $g(x)$ will have a
		horizontal asymptote at $x = \frac{1}{2} f(x)$ will have a horizontal asymptote
		at $x = 3$; $g(x)$ will have a vertical asymptote at $x = \frac{1}{2}$.
5.3	10	The concentration increases over the 24 h period and approaches approximately 1.85 mg/L.
5.3	14a	f(x) and $m(x)$
5.3	14b	g(x)
Mid-Chapter	2a	$D = \{x \in \mathbf{R}\}; R = \{y \in \mathbf{R}\}; y\text{-intercept} = 6;$
Kevlew		x-intercept = $-\frac{3}{2}$; negative on $(-\infty, -\frac{3}{2})$; positive on
		$(-\frac{3}{2},\infty)$; increasing on $(-\infty,\infty)$
Mid-Chapter	2b	D = { $x \in \mathbf{R}$ }; R = { $y \in \mathbf{R} y \ge -4$ }; y-intercept = -4; x-intercepts
Review		are 2 and -2; decreasing on $(-\infty, 0)$; increasing on $(0, \infty)$; positive on $(-\infty, -2)$; increasing on $(2, \infty)$:negative on $(-2, 2)$
Mid-Chapter	2c	$D = \{x \in \mathbf{R}\}; R = \{y \in \mathbf{R} \mid y \ge 6\}; v \text{-intercept} = 6; no x \text{-intercepts:}$
Review		function will never be negative; decreasing on $(-\infty, 0)$; increasing on $(0, \infty)$
Mid-Chapter	2d	$D = \{x \in \mathbf{R}\}; R = \{y \in \mathbf{R}\}; y$ -intercept = -4;

Review		<i>x</i> -intercept = -2 ; function is always decreasing; positive on ($-\infty$,-
		2); negative on $(-2, \infty)$
Mid-Chapter	4a	x = 2; horizontal asymptote
Review		
Mid-Chapter	4e	x = -5 and $x = 3$ (delete "vertical asymptotes")
Review		
Mid-Chapter	5	$y = \frac{x}{1}, y = \frac{7}{1}, y = \frac{7}{1}, y = \frac{1}{1}, y = 0$
Review		$y = x-2^{y-1}, y = 4^{y-1}, x^2+2x-15^{y-1}$
Mid-Chapter	6a	D = { $x \in \mathbf{R} x \neq 6$ }; vertical asymptote: $x = 6$; horizontal
Review		asymptote: $y = 0$; no x-intercept;
		y-intercept: $-\frac{5}{6}$; negative when the denominator is negative;
		positive when the numerator is positive;
		$x - 6$ is negative on $x < 6$; $f(x)$ is negative on $(-\infty, 6)$ and positive
		on $(6, \infty)$; function is decreasing on
		$(-\infty, 6)$ and $(6, \infty)$
Mid-Chapter	6b	$D = \{x \in \mathbb{R} \mid x \neq -4\}$; vertical asymptote: $x = -4$; horizontal
Review		asymptote: $y = 3$; x-intercept: $x = 0$;
		<i>v</i> -intercept: $f(0) = 0$; function is increasing on $(-\infty, -4)$ and $(-4, \infty)$;
		positive on $(-\infty, -4)$ and $(0, \infty)$; negative on $(-4, 0)$
Mid-Chapter	6c	$D = \{x \in \mathbb{R} \mid x \neq 2\}$; straight, horizontal line with a hole at $x = -2$;
Review		always positive and never increases or decreases
Mid-Chapter	6d	\mathbf{p} (\mathbf{p} , $\frac{1}{2}$) (1) (1) (1)
Review		$D = \{x \in \mathbb{R} \mid x \neq \overline{2}\}$; vertical asymptote: $x = \overline{2}$; norizontal
		a_{1}
		asymptote. $y = 2$, x-intercept. $x = 2$,
		<i>y</i> -intercept: $f(0) = 5$; function is increasing on $(-\infty, \frac{1}{2})$ and $(\frac{1}{2}, \infty)$
5.4	1	Yes; answers may vary. For example, substituting each value for <i>x</i>
		in the equation produces the same value on each side of the
		equation, so both are solutions.
5.4	6d	x = 0 and $x = 1$
5.4	6e	$x = -1$ and $x = -\frac{27}{13}$
5.4	7e	x = -1.72, 2.72
5.4	8a	x+1 $x+3$
		$\overline{x-2}^{-}\overline{x-4}$
		Multiply both sides by the LCD, $(x - 2) (x - 4)$.
		(x - 2)(x - 4)(x+1)
		(x-2)(x-4)(x-2)(x-2)
		$= (x-2) (x-4) \left(\frac{x+3}{x-4} \right)$
		(x-4)(x+1) = (x-2)(x+3)
		Simplify. $x^2 - 3x - 4 = x^2 + x - 6$
		Simplify the equation so that 0 is on one side of the equation.
		$x^{2}-x^{2}-3x-x-4+6$
		$=x^2 - x^2 + x - x - 6 + 6$

		-4x+2=0
		-4x = -2
		$x = \frac{1}{2}$
5.4	12a	After 6666.67 min
5.4	13b	1.05 min
5.5	1a	$(-\infty, 1)$ and $(3, \infty)$
5.5	4a	-5 < x < -4.5
5.5	4f	$-1 < x < \frac{7}{8}$ and $x > 4$
5.5	5d	t < -5 and 0 < t < 3
5.5	6a	$x \in (-6, -1]$ or $x \in (4, \infty)$
5.5	6b	$x \in (-\infty, -3)$
5.5	6c	$x \in (-4, -2]$ or $x \in (-1, 2]$
5.5	7a	$x < -6, -1 < x < \frac{1}{2}, x > 2$
5.5	8c	It would be difficult to find a situation that could be represented by
		these rational expressions because very few positive values of t
		yield a positive value of y.
5.5	9	Yes, as $f(t) - g(t) > 0$ on the interval (0, 0.31). For instance, the
		bacteria in the tap water will outnumber the bacteria in the pond
	10	water after $t = 0.2$ days.
5.5	10a	$\frac{(x-5)(x+1)}{2x} < 0$
5.5	11	when $1 < x < 5$
5.5	14	$14.48^{\circ} < x < 165.52^{\circ}$ and $180^{\circ} < x < 360^{\circ}$
5.5	15	$0^{\circ} < x < 2^{\circ}$
5.6	5d	11.72
5.6	6a	slope = 286.1; vertical asymptote: $x = -0.3$
5.6	6b	slope = 2.74; vertical asymptote: $x = -5$
5.6	6c	slope = -44.64; vertical asymptote: $x = -\frac{5}{3}$
5.6	7b	0
5.6	9b	-\$1.22 per T-shirt
5.6	10a	-11 houses per month
5.6	10b	-1 house per month
5.6	12d	The instantaneous speed for a specific time, <i>t</i> , is the acceleration of
		the object at this time.
Chapter	1b	$D = \{x \in \mathbf{R}\}; R = \{y \in \mathbf{R} \mid y \ge -10.125\};$
Review		x-intercept = 0.5 and -4 ;
		positive on $(-\infty, -4)$ and $(0.5, \infty)$;
		negative on (-4, 0.5);
		decreasing on $(-\infty, -1.75)$; increasing on $(-1.75, \infty)$
Chapter	1c	$D = \{x \in \mathbf{R}\}; R = \{y \in \mathbf{R} \mid y \ge 2\}; no x-intercepts;$
Review		y-intercept = 2; decreasing on $(-\infty, 0)$; increasing on $(0, \infty)$; always
		positive; never negative
Chapter	4	The locust population increased during the first
Review		1.4 years, to reach a maximum of 1 287 000. The population

		gradually decreased until the end of the
		50 years, when the population was 141 400.
Chapter	10d	0 < x < 1.5 or $x = 3$
Review		
Chapter	11	<i>t</i> > 64.73
Review		
Chapter	14	(6, 6)
Review		
Chapter Self-	6b	The graph will have a hole at $r = \frac{b}{a}$ rather than a vertical
Test		The graph will have a note at $x = -\frac{1}{a}$ father than a vertical
		asymptote at this point if it happens that
		cx + d = k(ax + b) for some real number k.
Chapter 6	T	
Location	Question	Correct Answer
6.1	7c	$-\pi$ radians
6.1	7e	$-\frac{3\pi}{2}$
		$-\frac{1}{4}$
6.1	7h	2π
		$-\overline{3}$
6.1	9b	81.25 m
6.1	16	86.81 radians/s
6.2	2d iv	π
		$\theta = \frac{1}{2}$
6.2	4c	$\left(\pi \right)$
		$-\cot\left(\frac{\pi}{4}\right)$
()	4.1	(4)
6.2	40	$-\sec\left(\frac{\pi}{2}\right)$
		(6)
6.2	8a	(π)
		$-\cos\left(\frac{-1}{4}\right)$
62	8h	(π)
0.2	00	$-\tan\left \frac{\pi}{\epsilon}\right $
		(6)
6.2	8c	$-\csc\left(\frac{\pi}{2}\right)$
		(3)
6.2	8d	(π)
		$-\cot\left(\frac{1}{3}\right)$
62	80	(-)
0.2	80	$-\sin\left(\frac{\pi}{c}\right)$
		(6)
6.4	5b	period = 6π , amplitude = 6, equation of the axis is
		$y = 6; y = -6\sin(0.5x) - 2$
6.4	9b	50
6.6	9	$0.98 \le t \le 1.52 \text{ min},$
		$3.48 \min \le t \le 4.02 \min$,
		$5.98 \min \le t \le 6.52 \min$
6.6	10a	$n(t) = 3.7 \cos{\left(\frac{\pi}{(t-172)}\right)} + 12$
		183

6.6	10b	y = 9.2 hours
6.7	9b	fastest: $t = 4$ months, $t = 16$ months, $t = 28$ months,
		t = 40 months;
		slowest: $t = 10$ months, $t = 22$ months, $t = 34$ months,
		t = 46 months
6.7	9c	about 1.01 mice per owl/month
Chapter	6a	12
Review		$\tan\theta = \frac{1}{-5}$
Chapter	6c	about 112.6° or 247.4°
Review		
Chapter	10	$2 \qquad 3\pi \qquad 1$
Review		$y = 3\cos(x + \frac{1}{4}) - 1$
Chapter Self-	3	$y \approx 94.9$
Test		
Chapter 7		
Location	Question	Correct Answer
7.4	4b	$LS = 1 - 2\sin^2 x$
		$=\cos^2 x$
		$=2\cos^{2}x-1$
		= RS
7.4	9a	$\cos^2 \theta - \sin^2 \theta$
		$LS = \frac{\cos^2 \theta}{\cos^2 \theta} + \sin \theta \cos \theta$
		$(\cos \theta - \sin \theta)(\cos \theta + \sin \theta)$
		$=\frac{(\cos\theta - \sin\theta)(\cos\theta + \sin\theta)}{(\cos\theta + \sin\theta)}$
		$(\cos\theta)(\cos\theta + \sin\theta)$
		$=\frac{\cos\theta-\sin\theta}{\cos\theta-\sin\theta}$
		$\cos heta$
		$=\frac{\cos\theta}{\sin\theta}-\frac{\sin\theta}{\sin\theta}$
		$\cos\theta$ $\cos\theta$
		$= 1 - \tan \theta$
		= RS
7.4	9c	$RS = \frac{1}{1 - 1 - \cos^2 r}$
		$rac{1}{\cos^2 x}$
		$1 \cos^2 x$
		$\left -\frac{1}{\cos^2 x}-\frac{1}{\cos^2 x}-\frac{1}{\cos^2 x}\right $
		$1-\cos^2 x$
		$=$ $\frac{1}{\cos^2 x}$ $-\cos^2 x$
		$\sin^2 r$
		$=\frac{\sin x}{2}-\cos^2 x$
		$\cos^2 x$
		$= \tan^{-} x - \cos^{-} x$
7.4	0.1	
/.4	90	$LS = \frac{1 - \cos\theta}{(1 - \cos\theta)} + \frac{1 + \cos\theta}{(1 - \cos\theta)}$
		$(1 + \cos\theta)(1 - \cos\theta) (1 + \cos\theta)(1 - \cos\theta)$
		$=\frac{1-\cos\theta+1+\cos\theta}{1+\cos\theta}$
		$1-\cos^2\theta$

		2
		$=\frac{1}{\sin^2\theta}$
		= RS
7.4	10a	$LS = \cos x \tan^3 x$
		$(\sin^3 x)$
		$= \cos x \left[\frac{\sin x}{\cos^3 x} \right]$
		$(\cos x)$
		$=\frac{\sin^3 x}{2}$
		$\cos^2 x$
		$=\frac{\sin^3 x}{\sin x}\sin x$
		$\cos^2 x$
		$=\tan^2 x \sin x$
7.4	1.01	= RS
7.4	106	$LS = \sin^2 \theta + \cos^4 \theta$
		$=\sin^2\theta + \cos^2\theta\cos^2\theta$
		$= \sin^2 \theta + (1 - \sin^2 \theta)(1 - \sin^2 \theta)$
		$= \sin^2 \theta + (1 - 2\sin^2 \theta + (\sin^2 \theta \sin^2 \theta))$
		$= \sin^2 \theta + 1 - 2\sin^2 \theta + (\sin^2 \theta \sin^2 \theta)$
		$= 1 - \sin^2 \theta + \sin^2 \theta \sin^2 \theta$
		$=\cos^2\theta + \sin^2\theta\sin^2\theta$
		$=\cos^2\theta + \sin^4\theta$
		= RS
7.4	10c	$\int \tan^2 x + 1$
		$LS = (\sin x + \cos x) \left(\frac{1}{\tan x} \right)$
		$\left(\operatorname{sec}^{2}\mathbf{r}\right)$
		$= (\sin x + \cos x) \left \frac{\sec^2 x}{\tan x} \right $
		$\left(\tan x \right)$
		$= (\sin x + \cos x) \left(\frac{1}{2} \right) \left(\frac{1}{2} \right)$
		$\left(\cos^2 x\right)\left(\tan x\right)$
		$= (\sin x + \cos x) \left(\frac{\cos x}{\cos x} \right)$
		$(\sin x \cos^2 x)$
		$=(\sin x + \cos x)\left(\frac{1}{1}\right)\left(\frac{\cos x}{\cos x}\right)$
		$\left(\cos^2 x\right)\left(\sin x\right)$
		$= (\sin x + \cos x) \left(\frac{1}{1} \right)$
		$(\sin x + \cos x)$ $(\sin x \cos x)$
		$=$ $\frac{\sin x}{\cos x}$ + $\frac{\cos x}{\cos x}$
		$\sin x \cos x \sin x \cos x$
		$= \frac{1}{1} + \frac{1}{1}$
		$\cos x \sin x$
7.4	104	
/.4	100	$LS = \tan^2 \beta + \cos^2 \beta + \sin^2 \beta$
		$= \tan^2 \beta + 1$
		$ = \sec^2 \beta$

		_ 1
		$-\frac{1}{\cos^2\beta}$
		=RS
7.4	10e	$LS = \sin\left(\frac{\pi}{4} + x\right) + \sin\left(\frac{\pi}{4} - x\right)$
		$=\sin\frac{\pi}{4}\cos x + \cos\frac{\pi}{4}\sin x + \sin\frac{\pi}{4}\cos x - \cos\frac{\pi}{4}\sin x$
		$= 2\sin\frac{\pi}{4}\cos x$
		$=(2)\left(\frac{\sqrt{2}}{2}\right)(\cos x)$
		$= \sqrt{2} \cos x$ $= RS$
7.4	10f	$LS = \sin\left(\frac{\pi}{2} - x\right)\cot\left(\frac{\pi}{2} + x\right)$
		$= \sin\left(\frac{\pi}{2} - x\right) \left(\frac{\cos\left(\frac{\pi}{2} + x\right)}{\sin\left(\frac{\pi}{2} + x\right)}\right)$
		$= \left(\sin\frac{\pi}{2}\cos x - \cos\frac{\pi}{2}\sin x\right) \times \left(\frac{\cos\frac{\pi}{2}\cos x - \sin\frac{\pi}{2}\sin x}{\sin\frac{\pi}{2}\cos x + \cos\frac{\pi}{2}\sin x}\right)$
		$= ((1)(\cos x) - (0)(\sin x)) \times \left(\frac{(0)(\cos x) - (1)(\sin x)}{(1)(\cos x) + (0)(\sin x)}\right)$
		$= \left(\cos x - 0\right) \left(\frac{0 - \sin x}{\cos x + 0}\right)$
		$=(\cos x)\left(-\frac{\sin x}{\cos x}\right)$
		$=-\sin x$
74	11a	-KS
,	110	$LS = \frac{\cos 2x + 1}{\sin 2x}$
		$2\cos^2 x - 1 + 1$
		$=\frac{1}{2\sin x\cos x}$
		$2\cos^2 x$
		$-\frac{1}{2\sin x\cos x}$
		$=\frac{\cos x}{\cos x}$
		$\sin x$
		$= \cot x$ $= \mathbf{PS}$
74	11b	-RS sin 2r
/.1	110	$LS = \frac{\sin 2x}{1 - \cos 2x}$

		2 sin r cos r
		$=\frac{2 \sin x \cos x}{1 (1 - 2 \sin^2 x)}$
		$1 - (1 - 2 \sin x)$
		$=\frac{2\sin x\cos x}{1-\cos x}$
		$1 - 1 + 2\sin^2 x$
		$=\frac{2\sin x\cos x}{2\sin x\cos x}$
		$2\sin^2 x$
		$-\cos x$
		$=\frac{1}{\sin x}$
		$= \cot x$
		=RS
7.4	11c	$LS = (\sin x + \cos x)^2$
		$=\sin^2 x + 2\sin x \cos x + \cos^2 x$
		$= 1 + 2 \sin x \cos x$
		$= 1 + \sin 2r$
		= RS
74	11d	$IS = \cos^4 \theta \sin^4 \theta$
/	114	$\begin{bmatrix} LS - \cos \theta - \sin \theta \\ 0 & \frac{2}{3} & \frac{2}{3} & 0 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & \frac{2}{3} & 0 \end{bmatrix}$
		$= (\cos \theta - \sin \theta)(\cos \theta + \sin \theta)$
		$= (\cos^2 \theta - \sin^2 \theta)(1)$
		$=\cos 2\theta$
		= RS
7.4	11e	$LS = \cot\theta - \tan\theta$
		$\cos\theta \sin\theta$
		$=\frac{1}{\sin\theta}-\frac{1}{\cos\theta}$
		$\cos^2 \theta - \sin^2 \theta$
		$=\frac{\cos \theta}{\cos \theta}$
		$\sin\theta\cos\theta$
		$=\frac{\cos 2\theta}{\cos 2\theta}$
		$\sin\theta\cos\theta$
		$= \frac{\cos 2\theta}{\cos^2 \theta}$
		$\frac{1}{2}\sin 2\theta$
		2
		$=2\frac{\cos 2\theta}{\cos^2 \theta}$
		$\sin 2\theta$
		$= 2 \cot 2\theta$
		= RS
7.4	11f	$LS = \frac{\cos\theta}{\cos\theta} + \frac{\sin\theta}{\sin\theta}$
		$\sin\theta \cos\theta$
		$\cos^2\theta + \sin^2\theta$
		$-\frac{1}{\sin\theta\cos\theta}$
		1
		$=\frac{1}{\sin\theta\cos\theta}$
		1
		$ =\frac{-}{1}$
		$\frac{1}{2}\sin^2\theta$
		$\frac{2}{2}$
		$=\frac{2}{1-2}$
		$\sin 2\theta$

		$=2\csc 2\theta$
		$- \Sigma C S C Z O$
7 4	11~	
/.4	iig	$RS = tan\left(x + \frac{\pi}{2}\right)$
		π
		$\tan x + \tan \frac{1}{4}$
		$=$ $\frac{1}{\pi}$
		$1 - \tan x \tan \frac{\pi}{4}$
		$\tan x + 1$
		$1 - (\tan x)(1)$
		$1 + \tan x$
		$=$ $\frac{1}{1-\tan r}$
		= I S
74	11h	$IS = \csc 2r + \cot 2r$
7.7	1111	$\frac{1}{1} = \frac{1}{1}$
		$=\frac{1}{1}+\frac{1}{1}$
		$\sin 2x \tan 2x$
		$=$ $\frac{1}{1}$ $+$ $\frac{1}{1}$
		$\sin 2x \left(\sin 2x \right)$
		$\left(\frac{1}{\cos 2x}\right)$
		$1 \cos 2x$
		$=\frac{1}{\sin 2u}+\frac{\cos 2u}{\sin 2u}$
		$\sin 2x - \sin 2x$
		$=\frac{1+\cos 2x}{\cos x}$
		$\sin 2x$
		$1 + (1 - 2\sin^2 x)$
		$\frac{1}{2\sin x \cos x}$
		$2-2\sin^2 x$
		$=\frac{1}{2\sin x \cos x}$
		$2 \sin x \cos x$ $2(1 + \frac{1}{2})$
		$=\frac{2(1-\sin^2 x)}{2}$
		$2\sin x\cos x$
		$=\frac{1-\sin^2 x}{1-\sin^2 x}$
		$\sin x \cos x$
		$\cos^2 x$
		$=\frac{1}{\sin x \cos x}$
		$\cos x$
		$-\frac{1}{\sin x}$
		$= \cot x$
		= RS
7.4	11i	$2 \tan x$
		$LS = \frac{1}{1 + \tan^2 x}$
		$2 \tan x$
		$=\frac{1}{\sec^2 x}$
		$2 \tan x$
		$=\frac{2 \tan \lambda}{(-1)}$
		$\left(\cos^2 x\right)$

		$= (2\tan x)(\cos^2 x)$
		$=\left(2\frac{\sin x}{\cos^2 x}\right)\left(\cos^2 x\right)$
		$\left(\frac{2}{\cos x}\right)^{(\cos x)}$
		$=2\sin x\cos x$
		$= \sin 2x$
7.4	11;	= RS
7.4	11]	$RS = \frac{csci}{csci + 2sint}$
		1
		$\frac{1}{\sin t}$
		$=\frac{1}{1}$
		$\left(\frac{1}{\sin t} - 2\sin t\right)$
		$-\frac{\sin t}{\sin t}$
		$-\frac{1}{1}$
		$\left(\frac{1}{\sin t} - \frac{1}{\sin t}\right)$
		$ = \underline{sin t} $
		$\left(1-2\sin^2 t\right)$
		$\left(\frac{1}{\sin t} \right)$
		_ 1
		$-\frac{1}{1-2\sin^2 t}$
		= <u>1</u>
		$\cos 2t$
		$= \sec 2t$
7.4	11k	
		$RS = \frac{1}{2}(\sec\theta)(\csc\theta)$
		1(1)(1)
		$= \frac{1}{2} \left(\frac{1}{\cos \theta} \right) \left(\frac{1}{\sin \theta} \right)$
		_ 1
		$-\frac{1}{2\cos\theta\sin\theta}$
		= <u>1</u>
		$\sin 2\theta$
		$= \csc 2\theta$
7.4	111	$\frac{1-15}{2\sin t\cos t} = 2\cos^2 t - 1$
		$RS = \frac{2 \sin t \cos t}{\sin t} - \frac{2 \cos t t}{\cos t}$
		$2\sin t \cos^2 t - \sin t (2\cos^2 t - 1)$
		$=\frac{-\cos t \cos t}{\sin t \cos t} - \frac{\sin t(2\cos t - t)}{\cos t \sin t}$
		$2\sin t\cos^2 t - 2\cos^2 t\sin t + \sin t$
		$=$ $\frac{1}{\cos t \sin t}$

		$= \frac{\sin t}{\cos t}$
		$\cos t \sin t$
		$=$ $\frac{1}{}$
		$\cos t$
		$= \sec t$
Chantan	0	= LS
Review	8	$LS = \frac{\cos^2 x}{\cot^2 x}$
		$=\frac{\cos^2 x}{\cos^2 x}$
		$\left(\frac{\cos^2 x}{\cos^2 x}\right)$
		$\left(\sin^2 x\right)$
		$=\frac{(\cos^2 x)(\sin^2 x)}{(\sin^2 x)}$
		$\cos^2 x$
		$=\sin^2 x$
		$= 1 - \cos^2 x$
Chapter	0	= RS
Review	9	$LS = \frac{2(\sec^2 x - \tan^2 x)}{2}$
		2(1)
		$=\frac{2(1)}{\csc x}$
		2
		$=\frac{1}{\csc x}$
		$=2\sin x$
		$=\frac{2\sin x\cos x}{2\cos x}$
		$\cos x$
		$=\frac{\sin 2x}{\cos^2 x}$
		$\cos x$
		$= \sin 2x \sec x$
Chapter Self	1	= KS
Test	1	$RS = \frac{1 - 2\sin^2 x}{\cos x + \sin x} + \sin x$
		$=\frac{1-2\sin^2 x+\sin x(\cos x+\sin x)}{1-2\sin^2 x+\sin x(\cos x+\sin x)}$
		$\cos x + \sin x$
		$=\frac{1-2\sin^2 x+\sin x\cos x+\sin^2 x}{1-2\sin^2 x+\sin^2 x}$
		$\cos x + \sin x$
		$=\frac{1-\sin^2 x+\sin x\cos x}{\sin^2 x+\sin x\cos x}$
		$\cos x + \sin x$
		$=\frac{\cos^2 x + \sin x \cos x}{\cos x}$
		$\cos x + \sin x$
		$=\frac{\cos(\cos x + \sin x)}{\cos x + \sin x}$
		$\cos x + \sin x$ $= \cos x$
		= LS
Chapter 8	1	

Location	Question	Correct Answer
Getting	5a (iv)	$y = \pm \sqrt{x-3} + 4$ (Answer missing in answer key but correct in
Started		solutions manual)
Getting	6d	4.4×10^{14}
Started		
8.1	9c	3
8.2	4 iii (d)	$D = \{x \in \mathbf{R} \mid x > 0\}, R = \{y \in \mathbf{R}\}$
		(Correct in Solutions Manual)
8.2	5b	$D = \{x \in \mathbf{R} \mid x > 6\}, R = \{y \in \mathbf{R}\}$
8.2	8a	$f(x) = -3 \log_{10} \left(\frac{1}{2} (x - 5) \right) + 2$
8.2	8b	(25, -1)
8.3	4d	1.40 (Correct in Solutions Manual)
8.3	19a	positive for all values $a > 1$
8.3	19b	negative for all values $0 < a < 1$
8.3	19c	undefined for all values $a \le 0$
8.3	21b	$y = \log_2\left(\frac{x}{3}\right)$
8.3	21c	$y = \log_{0.5} x - 2$
8.3	21d	Insert " $y =$ " before given expression.
8.4	3b	-1 log ₃ 7
8.4	10c	$log_4 4$; $x = 4$ (Correct in Solutions Manual)
Mid-Chapter	13b	0.80
Review		
Mid-Chapter	13c	3.82
Review		
Mid-Chapter	13d	1.35
Review		
Mid-Chapter	13e	1.69
Review		
8.5	2a	4.086
8.5	2d	4.090
8.5	14a	x = 5 or x = -1
8.5	14b	x = -5 or x = -4
8.6	10	<i>x</i> = 2
8.6	11b	x = 2.15
8.6	11d	<i>x</i> = 0.33
8.7	12a	7.0, 6.7, 6.4, 6.2, 5.9, 5.7, 5.5
8.7	12b	6.2
Chapter	7d	log144
Review		
Chapter	10d	$ _{-3} \frac{1}{1}$
Review		5,2
Chapter Self-	3b	2
Test		

Chapter 9		
Location	Question	Correct Answer

Getting	4f	π 5π
Started		$x=\pi, \overline{6}, \overline{6}$
9.1	2a	Answers may vary. For example, $y = \frac{2 - 0.5x}{x^4 - x^2}$
9.1	2b	Answers may vary. For example, $y = (2x)(\sin (2\pi x))$ (insert graph from 2c)
9.1	2c	Answers may vary. For example, $y = (2x)(\cos(2\pi x))$ (insert graph from 2b)
9.3	5 (4e)	$D = \{x \in \mathbf{R} \mid x \neq 1\}, R = \{y \in \mathbf{R}\}$
9.3	5 (4f)	$D = \{x \in \mathbf{R} \mid x > -4\}, R = \{y \in \mathbf{R}\}$
9.3	6 (4c)	The function is not symmetric. The function is increasing from $-\infty$ to 0 and from 6 to ∞ . zeros at $r = 0.9$
		The relative minimum is at $x = 6$
		The relative maximum is at $x = 0$.
		period: N/A
9.3	6 (4f)	The function is not symmetric.
		The function is increasing from -4 to ∞ .
		zeros: $x = -3$
		maximum/minimum: none
		period: N/A
9.3	8a	$\left\{x \in \mathbf{Z} \middle x \neq -2, 7, \left(\frac{2n+1}{2}\right)\pi\right\}$
9.3	8c	$\{x \in \mathbf{Z} \mid x \ge -81 \text{ and } x \neq n\pi\}$
9.4	2d (1f)	domain of $(f \div g)$: { $x \in \mathbf{R} \mid x > 0, x \neq 1$ }
Mid-Chapter Review	7b	$(f \div g)(x) = \frac{10x}{x^2 - 3}$
		$\mathbf{D} = \{ x \in \mathbf{R} \mid x \neq \pm \sqrt{3}, 0 \}$
9.5	6c	$f \circ \alpha = \sqrt{4 - x^4}$
		$\int \partial g = \sqrt{2} x$
		$\mathbf{D} = \{ x \in \mathbf{R} \mid -\sqrt{2} \le x \le \sqrt{2} \}$
		$\mathbf{R} = \{ y \in \mathbf{R} \mid 0 \le y \le 2 \}$
		$g \circ j = 4 - x$
		$\mathbf{D} = \{ \mathbf{x} \in \mathbf{K} \mid -2 \le \mathbf{x} \le 2 \}$ $\mathbf{P} = \{ \mathbf{x} \in \mathbf{P} \mid 0 \le \mathbf{x} \le 4 \}$
0.5	61	$\mathbf{R} = \{ y \in \mathbf{R} \mid 0 \le y \le 4 \}$
9.5	ou	$f \circ g = 2\sqrt{n}$
		$\mathbf{D} = \{ x \in \mathbf{R} \mid x \ge 1 \}$
		$\mathbf{R} = \{ y \in \mathbf{R} \mid y \ge 1 \}$
		$g \circ f = 2\sqrt{2}$
		$\mathbf{D} = \{ x \in \mathbf{R} \mid x \ge 0 \}$
0.5	60	$\mathbf{K} = \{ y \in \mathbf{K} \mid y \ge 0 \}$
7.5	00	$\int \circ g = x$
		$\mathbf{D} = \{ x \in \mathbf{K} \mid x \ge 0 \}$
		$\mathbf{K} = \{ y \in \mathbf{K} \mid y > 0 \}$
		$g \circ J = x$
		$D = \{x \in \mathbf{R}\}$

		$R = \{y \in \mathbf{R}\}$
9.5	8c	It is vertically stretched by a factor of 2 and translated
		down 1 unit.
9.5	9a	f(g(x)) = 6x + 3
		It has been vertically stretched by a factor of 3 and
		translated up 1 unit.
9.5	9b	g(f(x)) = 6x - 1
		It has been vertically stretched by a factor of 3.
9.5	16b	$f(k) = 2\sqrt{9k - 16} + 5$
9.6	4	f(x) < g(x): 1.3 < x < 1.6
		f(x) = g(x): $x = 0$ or 1.3
		$f(x) > g(x): 0 < x < 1.3 \text{ or } 1.6 < x \le 3$
9.6	6e	x = 0.21 or 0.72
9.6	9a	$x \in (-0.57, 1) (6.33, \infty)$
9.6	9e	$x = 0 \text{ or } x \in [0.35, 1.51]$
9.6	14	$x = 0 \pm 2n, x = 0.67 \pm 2n \text{ or } x = 0.62 \pm 2n, \text{ where } n \in \mathbf{I}$
9.7	11d	$P(65) \approx 10\ 712\ 509$
9.7	15b	exponential or rational
9.7	15c	exponential or rational
Chapter	5	The part labeled "d)" should be labeled "c)".
Review		
Chapter	11	f(x) < g(x): -1.06 < x < 0 or x > 1.06
Review		f(x) = g(x): $x = -1.06$, 0, or 1.06
		$f(x) > g(x)$: $x < -1.06$ or $0 < x \le 1.06$
Chapter	13a	P(t) = 600t - 1000. The slope is the rate that the
Review		population is changing. The P-intercept would
		represent the initial number of frogs.